Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 940
1.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675565

The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.


Arachidonate 15-Lipoxygenase , Liver X Receptors , Macrophages , Oxylipins , Arachidonate 15-Lipoxygenase/metabolism , Liver X Receptors/metabolism , Liver X Receptors/agonists , Humans , Macrophages/metabolism , Macrophages/drug effects , Oxylipins/metabolism , Oxylipins/pharmacology , Anti-Inflammatory Agents/pharmacology , Sterols/pharmacology , Sterols/metabolism
2.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Article En | MEDLINE | ID: mdl-38615640

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Aflatoxin B1 , Apoptosis , Cell Survival , Leydig Cells , Triterpenes , Aflatoxin B1/toxicity , Apoptosis/drug effects , Leydig Cells/drug effects , Animals , Cell Line , Cell Survival/drug effects , Mice , Male , Triterpenes/pharmacology , Sterols/pharmacology , Caspase 3/metabolism , Protective Agents/pharmacology , Caspase 9/metabolism
4.
Int J Radiat Biol ; 100(5): 791-801, 2024.
Article En | MEDLINE | ID: mdl-38442139

PURPOSE: Radiotherapy with bladder preservation is highly acceptable among patients bearing bladder cancer (BCa), but the occurrence of secondary tolerance (ARR) during treatment is one of the important reasons for the failure of clinical radiotherapy. COX-2 has been frequently reported to be highly expressed and associated with radio-resistance in various cancers. In this study, the feasibility of Taraxasterol (Tara) as a radiosensitizer was investigated, and the target effect of Tara on COX-2 and its underlying mechanism were explored. METHODS AND MATERIALS: The toxicity of Tara toward BCa cells was detected with the MTT method and cells in response to IR or Tara + IR were compared by clone formation assay. Next, a small RNA interference system (siRNA) was employed to decrease endogenous COX-2 expression in BCa cells, and the stem cell-like features and motion abilities of BCa cells under different treatments were investigated using microsphere formation and transwell chamber assay, respectively. Meanwhile, the expression of a series of inflammation-related molecules and stem cell characteristic molecules was determined by qRT-PCR, western blot and ELISA method. In vivo studies, BCa cells were subcutaneously injected into the right flank of each male mouse. Those mice were then grouped and exposed to different treatment: Tara, IR, IR + Tara and untreated control. The volumes of each tumor were measured every two days and target proteins were detected with immunohistochemical (IHC) staining. RESULTS: The results show that COX-2 decline, due to COX-2 knocking-down or Tara treatment, could greatly enhance BCa cells' radiosensitivity and significantly decrease their migration, invasion and microsphere formation abilities, companied with the reduce of JAK2, phos-STAT3, MMP2 and MMP9 expression. However, Tara could not further reduce the expression of an above molecule of cells in COX-2-deficient BCa cells. Correspondingly, Tara treatment could not further enhance those siCOX-2 BCa cells response to IR. CONCLUSIONS: Our data support that Tara can improve the radiosensitivity of BCa cells by targeting COX-2/PGE2. The mechanism may involve regulating STAT3 phosphorylation, DNA damage response protein activation, and expression of MMP2/MMP9.


Cyclooxygenase 2 , Janus Kinase 2 , Radiation Tolerance , STAT3 Transcription Factor , Urinary Bladder Neoplasms , Janus Kinase 2/metabolism , Humans , Cyclooxygenase 2/metabolism , Urinary Bladder Neoplasms/radiotherapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Animals , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Mice , Radiation Tolerance/drug effects , Dinoprostone/metabolism , Signal Transduction/drug effects , Sterols/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Radiation-Sensitizing Agents/pharmacology , Male
5.
J Nat Prod ; 87(4): 713-721, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38417168

PD-1/PD-L1 monoclonal antibodies exhibit promising therapeutic effectiveness in multiple cancers. However, developing a simple and efficient non-antibody treatment strategy using the PD-1/PD-L1 signaling pathway still remains challenging. In this study, we developed a flow cytometry assay to screen bioactive compounds with PD-L1 inhibitory activity. A total of 409 marine natural products were screened, and sokotrasterol sulfate (SKS) was found to efficiently suppress the IFN-γ-induced PD-L1 expression. SKS sensitizes the tumor cells to antigen-specific T-cell killing in the T cell-tumor cell coculture system. Mechanistically, SKS directly targeted Janus kinase (JAK) to inhibit the downstream activation of signal transducer and activator of transcription (STAT) and the subsequent transcription of PDL1. Our findings highlight the immunological role of SKS that may act as a basis for a potential immunotherapeutic agent.


B7-H1 Antigen , Interferon-gamma , Janus Kinases , Interferon-gamma/pharmacology , Humans , Janus Kinases/metabolism , Sterols/pharmacology , Signal Transduction/drug effects , Molecular Structure , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
6.
Bioorg Med Chem Lett ; 98: 129594, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38104905

Here we examined the membrane binding and pore formation of amphidinol 3 (AM3) and its truncated synthetic derivatives. Importantly, both of the membrane affinity and pore formation activity were well correlated with the reported antifungal activity. Our data clearly demonstrated that the C1-C30 moiety of AM3 plays essential roles both in sterol recognition and stable pore formation. Based on the current findings, we updated the interacting model between AM3 and sterol, in which the moiety encompassing from C21 to C67 accommodates a sterol molecule with forming hydrogen bonds with the sterol hydroxy group and van der Waals contact between AM3 polyol and sterol skeleton. Although the conformation of the C1-C20 moiety of AM3 is hard to specify due to its flexibility, the region likely contributes to stabilization of pore structure.


Amphidinols , Sterols , Sterols/pharmacology , Sterols/chemistry , Alkenes/chemistry , Pyrans/chemistry
7.
J Nutr ; 154(2): 626-637, 2024 02.
Article En | MEDLINE | ID: mdl-38110182

BACKGROUND: Artificially fermented dark loose tea is a type of novel dark tea prepared via fermentation by Eurotium cristatum. The effects of artificially fermented dark loose tea on lipid metabolism are still unclear. OBJECTIVES: This study aimed to explore if artificially fermented dark loose tea has the same effects as naturally fermented dark loose tea in regulating hepatic lipid metabolism. METHODS: Thirty-six 8-wk-old male C57BL/6 mice were randomly divided into 6 treatment groups, including normal control (NC), high-fat diet (HFD), positive control (PC), Wuniuzao dark raw tea (WDT), Wuniuzao naturally fermented dark loose tea (NFLT), and Wuniuzao artificially fermented dark loose tea (AFLT) groups. The HFD, PC, WDT, NFLT, and AFLT groups were fed a HFD. The PC group was supplemented with atorvastatin (10 mg/kg). The WDT group was supplemented with WDT (300 mg/kg), the NFLT group with NFLT (300 mg/kg), and the AFLT group with AFLT (300 mg/kg). RESULTS: The study compared the effect of WDT, NFLT, and AFLT on liver steatosis and gut microbiota disorder in obese mice. All 3 tea extracts reduced body weight, glucose tolerance, and serum lipid concentrations. Via sterol-regulatory element binding protein (SREBP)-mediated lipid metabolism, all 3 tea extracts alleviated hepatic steatosis in mice with obesity. Furthermore, NFLT and AFLT intervened in the abundance of Firmicutes, Bacteroidetes, Clostridia, Muribaculaceae, and Lachnospiraceae. CONCLUSION: In mice with obesity induced by a HFD, WDT, NFLT, and AFLT may improve hepatic steatosis through an SREBP-mediated lipid metabolism. Moreover, NFLT and AFLT improved the composition of gut microbiota.


Gastrointestinal Microbiome , Tea , Male , Mice , Animals , Tea/chemistry , Mice, Obese , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/pharmacology , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/pharmacology , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Lipid Metabolism , Sterols/pharmacology , Diet, High-Fat
8.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-38139328

Infections caused by Candida spp. pose a continuing challenge for modern medicine, due to widespread resistance to commonly used antifungal agents (e.g., azoles). Thus, there is considerable interest in discovering new, natural compounds that can be used in combination therapy with conventional antibiotics. Here, we investigate whether the natural compounds surfactin and capric acid, in combination with posaconazole, enhance the growth inhibition of C. albicans strains with alterations in sterols and the sphingolipids biosynthesis pathway. We demonstrate that combinations of posaconazole with surfactin or capric acid correspond with the decreased growth of C. albicans strains. Moreover, surfactin and capric acid can independently contribute to the reduced adhesion of C. albicans strains with altered ergosterol biosynthesis to abiotic surfaces (up to 90% reduction in adhesion). A microscopic study of the C. albicans plasma membrane revealed that combinations of those compounds do not correspond with the increased permeabilization of the plasma membrane when compared to cells treated with posaconazole alone. This suggests that the fungistatic effect of posaconazole in combination with surfactin or capric acid is related to the reduction in adhesion of C. albicans.


Candida albicans , Phytosterols , Sterols/pharmacology , Sterols/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Azoles/pharmacology , Phytosterols/metabolism , Sphingolipids/metabolism , Microbial Sensitivity Tests
9.
Pak J Pharm Sci ; 36(6): 1823-1829, 2023 Nov.
Article En | MEDLINE | ID: mdl-38124423

Anxiolytic effect of ethanol, hexane extracts and pure compounds ß- sito sterol glucoside and bergenin isolated from Adenanthera pavonina AP (Fabaceae) and Peltophorum pterocarpum PP (Fabaceae) leaves were monitored in this study. Mice were treated with dose of 125mg/kg body weight of ethanol and hexane leaves extracts of both tested plants while, 5mg/kg body weight of ß-sito sterol glucoside and 25mg/kg body weight of bergenin. The effect was monitored by hole board test, forced swimming test, open field apparatus and stationary rod test. Results from neuropharmacological effects revealed that ethanol extract of AP leaves and hexane extract of PP leaves had significant anxiolytic (forced swimming test) exploratory (head dip and open field test) and neuro activator activity (stationary rod test) at tested dose. The greatest anti-depressant and anxiolytic effect was found in ethanol extract of AP leaves when compared to all treated drugs. A part from memory enhancing effects, diazepam treated mice also exhibited anxiolytic and antidepressant effects and found comparable with ethanol extract of AP. These findings may clarify the impact of ethanol, hexane extracts and pure substances ß-sitosterol glucoside and bergenin at tested concentrations, as well as their potential to treat the Parkinson's and related disorders as an alternative therapy.


Anti-Anxiety Agents , Fabaceae , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hexanes , Depression/drug therapy , Ethanol/pharmacology , Anxiety/drug therapy , Body Weight , Glucosides/pharmacology , Sterols/pharmacology , Behavior, Animal
10.
Front Cell Infect Microbiol ; 13: 1221246, 2023.
Article En | MEDLINE | ID: mdl-38035328

Introduction: Farnesol, derived from farnesyl pyrophosphate in the sterols biosynthetic pathway, is a molecule with three unsaturations and four possible isomers. Candida albicans predominantly secretes the trans, trans-farnesol (t, t-FOH) isomer, known for its role in regulating the virulence of various fungi species and modulating morphological transition processes. Notably, the evolutionary divergence in sterol biosynthesis between fungi, including Candida albicans, and trypanosomatids resulted in the synthesis of sterols with the ergostane skeleton, distinct from cholesterol. This study aims to assess the impact of exogenously added trans, trans-farnesol on the proliferative ability of Leishmania amazonensis and to identify its presence in the lipid secretome of the parasite. Methods: The study involved the addition of exogenous trans, trans-farnesol to evaluate its interference with the proliferation of L. amazonensis promastigotes. Proliferation, cell cycle, DNA fragmentation, and mitochondrial functionality were assessed as indicators of the effects of trans, trans-farnesol. Additionally, lipid secretome analysis was conducted, focusing on the detection of trans, trans-farnesol and related products derived from the precursor, farnesyl pyrophosphate. In silico analysis was employed to identify the sequence for the farnesene synthase gene responsible for producing these isoprenoids in the Leishmania genome. Results: Exogenously added trans, trans-farnesol was found to interfere with the proliferation of L. amazonensis promastigotes, inhibiting the cell cycle without causing DNA fragmentation or loss of mitochondrial functionality. Despite the absence of trans, trans-farnesol in the culture supernatant, other products derived from farnesyl pyrophosphate, specifically α-farnesene and ß-farnesene, were detected starting on the fourth day of culture, continuing to increase until the tenth day. Furthermore, the identification of the farnesene synthase gene in the Leishmania genome through in silico analysis provided insights into the enzymatic basis of isoprenoid production. Discussion: The findings collectively offer the first insights into the mechanism of action of farnesol on L. amazonensis. While trans, trans-farnesol was not detected in the lipid secretome, the presence of α-farnesene and ß-farnesene suggests alternative pathways or modifications in the isoprenoid metabolism of the parasite. The inhibitory effects on proliferation and cell cycle without inducing DNA fragmentation or mitochondrial dysfunction raise questions about the specific targets and pathways affected by exogenous trans, trans-farnesol. The identification of the farnesene synthase gene provides a molecular basis for understanding the synthesis of related isoprenoids in Leishmania. Further exploration of these mechanisms may contribute to the development of novel therapeutic strategies against Leishmania infections.


Leishmania mexicana , Leishmania , Farnesol/metabolism , Farnesol/pharmacology , Leishmania mexicana/metabolism , Leishmania/metabolism , Sterols/analysis , Sterols/pharmacology , Candida albicans
11.
Bioorg Chem ; 140: 106824, 2023 11.
Article En | MEDLINE | ID: mdl-37669581

Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 µM; CC50 > 100 µM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.


Antiviral Agents , Basidiomycota , Coronavirus OC43, Human , Sterols , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apoptosis , Carboxylic Acids , Fruiting Bodies, Fungal/chemistry , Sterols/chemistry , Sterols/pharmacology , Basidiomycota/chemistry
12.
Sci Rep ; 13(1): 13617, 2023 08 21.
Article En | MEDLINE | ID: mdl-37604855

Escin is a mixture of over 30 glycosylated triterpenoid (saponin) structures, extracted from the dried fruit of horse chestnuts. Escin is currently used as an anti-inflammatory, and has potential applications in the treatment of arthritis and cancer. Engineered yeast would enable production of specific bioactive components of escin at industrial scale, however many saponins have been shown to be toxic to yeast. Here we report that a Saccharomyces cerevisiae strain specifically lacking the sterol C-5 desaturase gene ERG3, exhibits striking enhanced tolerance to escin treatment. Transcriptome analyses, as well as pre-mixing of escin with sterols, support the hypothesis that escin interacts directly with ergosterol, but not as strongly with the altered sterols present in erg3Δ. A diverse range of saponins are of commercial interest, and this research highlights the value of screening lipidome mutants to identify appropriate hosts for engineering the industrial production of saponins.


Saccharomyces cerevisiae , Saponins , Saccharomyces cerevisiae/genetics , Escin , Saponins/pharmacology , Sterols/pharmacology , Anti-Inflammatory Agents , Fatty Acid Desaturases
13.
Sci Rep ; 13(1): 10786, 2023 07 04.
Article En | MEDLINE | ID: mdl-37402875

Edible insects are increasingly gaining popularity as research reveals multiple benefits. However, the rediscovery of natural products from insects as medicinal agents has received limited attention. This study aimed at evaluating the diversity of sterols in extracts of nine edible insects and potential antibacterial activities. Dichloromethane extracts of these insects were analyzed using gas chromatography-mass spectrometry to identify important sterols, followed by evaluation of their anti-bacterial activities. Nineteen sterols were identified with the highest recorded in African fruit beetle [Pachnoda sinuata (47.37%)], crickets [Gryllus bimaculatus (36.84%) and Scapsipedus icipe (31.58%)]. Cholesterol was the most prevalent, except in black soldier fly (Hermetia illucens). Bioactivity revealed S. icipe as the most potent extract against Escherichia coli and Bacillus subtilis whereas G. bimaculatus was highest against Methicillin-susceptible Staphylococcus aureus 25923. These findings unravels the diversity of sterols in edible insects and their possible application in food, pharmaceutical and cosmetic industries.


Coleoptera , Diptera , Edible Insects , Gryllidae , Phytosterols , Animals , Sterols/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gas Chromatography-Mass Spectrometry
14.
Steroids ; 199: 109282, 2023 Nov.
Article En | MEDLINE | ID: mdl-37482327

Six steroid conjugates of bile acids and sterol derivatives have been synthesized using the click chemistry method. The azide-alkyne Huisgen cycloaddition of the propionyl ester of lithocholic, deoxycholic and cholic acid with azide derivatives of cholesterol and cholestanol gave new bile acid-sterol conjugates linked with a 1,2,3-triazole ring. Previously, sterols were converted to bromoacetate substituted derivatives by reaction with bromoacetic acid bromide in anhydrous dichloromethane. These compounds were then converted to azide derivatives using sodium azide. The propiolic esters of lithocholic, deoxycholic and cholic acids were obtained by reaction with propiolic acid in the presence of p-toluenesulfonic acid. Additionally, two of these steroids: methyl 3α-propynoyloxy-12α-acetoxy-5ß-cholane-24-oate and methyl 3α-propynoyloxy-7 α,12α-diacetoxy-5ß-cholane-24-oate were also obtained and characterized for the first time. All conjugates were obtained in good yields using an efficient synthesis method. The structures of all conjugates and the four substrates were confirmed by spectral (1H- and 13C NMR, FT-IR) analysis, mass spectrometry (ESI-MS), and PM5 semiempirical methods. The pharmacotherapeutic potential of the synthesized compounds was estimated based on the in silico Prediction of Activity Spectra for Substances (PASS) method. The cytotoxicity of the compounds was in vitro evaluated in a hemolytic assay using human erythrocytes as a cell model. The in silico and in vitro study results indicate that the selected compound possesses an interesting biological activity and can be considered as potential drug design agent. Additionally, molecular docking was performed for the selected conjugate.


Bile Acids and Salts , Phytosterols , Humans , Sterols/pharmacology , Sterols/chemistry , Click Chemistry , Spectroscopy, Fourier Transform Infrared , Azides , Molecular Docking Simulation , Cholic Acid
15.
Molecules ; 28(9)2023 May 04.
Article En | MEDLINE | ID: mdl-37175277

Leishmaniasis is a neglected tropical disease that still infects thousands of people per year throughout the world. The occurrence of resistance against major treatments for this disease causes a healthcare burden in low-income countries. Eugenol is a phenylpropanoid that has shown in vitro antileishmanial activity against Leishmania mexicana mexicana (Lmm) promastigotes with an IC50 of 2.72 µg/mL and a high selectivity index. Its specific mechanism of action has yet to be studied. We prepared large unilamellar vesicles (LUVs), mimicking Lmm membranes, and observed that eugenol induced an increase in membrane permeability and a decrease in membrane fluidity at concentrations much higher than IC50. The effect of eugenol was similar to the current therapeutic antibiotic, amphotericin B, although the latter was effective at lower concentrations than eugenol. However, unlike amphotericin B, eugenol also affected the permeability of LUVs without sterol. Its effect on the membrane fluidity of Lmm showed that at high concentrations (≥22.5× IC50), eugenol increased membrane fluidity by 20-30%, while no effect was observed at lower concentrations. Furthermore, at concentrations below 10× IC50, a decrease in metabolic activity associated with the maintenance of membrane integrity revealed a leishmaniostatic effect after 24 h of incubation with Lmm promastigotes. While acidocalcisomes distribution and abundance revealed by Trypanosoma brucei vacuolar H+ pyrophosphatase (TbVP1) immunolabeling was not modified by eugenol, a dose-dependent decrease of lipid droplets assessed by the Nile Red assay was observed. We hereby demonstrate that the antileishmanial activity of eugenol might not directly involve plasma membrane sterols such as ergosterol, but rather target the lipid storage of Lmm.


Antiprotozoal Agents , Leishmania mexicana , Leishmaniasis , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Amphotericin B/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Sterols/pharmacology
16.
Mar Drugs ; 21(5)2023 May 08.
Article En | MEDLINE | ID: mdl-37233485

The marine environment is considered a vast source in the discovery of structurally unique bioactive secondary metabolites. Among marine invertebrates, the sponge Theonella spp. represents an arsenal of novel compounds ranging from peptides, alkaloids, terpenes, macrolides, and sterols. In this review, we summarize the recent reports on sterols isolated from this amazing sponge, describing their structural features and peculiar biological activities. We also discuss the total syntheses of solomonsterols A and B and the medicinal chemistry modifications on theonellasterol and conicasterol, focusing on the effect of chemical transformations on the biological activity of this class of metabolites. The promising compounds identified from Theonella spp. possess pronounced biological activity on nuclear receptors or cytotoxicity and result in promising candidates for extended preclinical evaluations. The identification of naturally occurring and semisynthetic marine bioactive sterols reaffirms the utility of examining natural product libraries for the discovery of new therapeutical approach to human diseases.


Phytosterols , Theonella , Animals , Humans , Sterols/pharmacology , Sterols/chemistry , Receptors, Cytoplasmic and Nuclear
17.
PLoS One ; 18(5): e0285721, 2023.
Article En | MEDLINE | ID: mdl-37186612

BACKGROUND: Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS: We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS: We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION: This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.


Ozone , Adult , Humans , Ozone/adverse effects , Pilot Projects , Sterols/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Lung , Inflammation/chemically induced , Vitamins/pharmacology , Vitamin D/pharmacology
18.
Eur J Med Chem ; 254: 115378, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37084599

A series of thirty 1,2,3-triazolylsterols, inspired by azasterols with proven antiparasitic activity, were prepared by a stereocontrolled synthesis. Ten of these compounds constitute chimeras/hybrids of 22,26-azasterol (AZA) and 1,2,3-triazolyl azasterols. The entire library was assayed against the kinetoplastid parasites Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei, the causatives agents for visceral leishmaniasis, Chagas disease, and sleeping sickness, respectively. Most of the compounds were active at submicromolar/nanomolar concentrations with high selectivity index, when compared to their cytotoxicity against mammalian cells. Analysis of in silico physicochemical properties were conducted to rationalize the activities against the neglected tropical disease pathogens. The analogs with selective activity against L. donovani (E4, IC50 0.78 µM), T brucei (E1, IC50 0.12 µM) and T. cruzi (B1- IC50 0.33 µM), and the analogs with broad-spectrum antiparasitic activities against the three kinetoplastid parasites (B1 and B3), may be promising leads for further development as selective or broad-spectrum antiparasitic drugs.


Chagas Disease , Parasites , Trypanosoma cruzi , Trypanosomiasis, African , Animals , Sterols/pharmacology , Sterols/chemistry , Trypanosomiasis, African/drug therapy , Antiparasitic Agents/chemistry , Chagas Disease/drug therapy , Mammals
19.
Microbiol Spectr ; 11(3): e0031523, 2023 06 15.
Article En | MEDLINE | ID: mdl-37036336

Certain members of the order Mucorales can cause a life-threatening, often-fatal systemic infection called mucormycosis. Mucormycosis has a high mortality rate, which can reach 96 to 100% depending on the underlying condition of the patient. Mucorales species are intrinsically resistant to most antifungal agents, such as most of the azoles, which makes mucormycosis treatment challenging. The main target of azoles is the lanosterol 14α-demethylase (Erg11), which is responsible for an essential step in the biosynthesis of ergosterol, the main sterol component of the fungal membrane. Mutations in the erg11 gene can be associated with azole resistance; however, resistance can also be mediated by loss of function or mutation of other ergosterol biosynthetic enzymes, such as the sterol 24-C-methyltransferase (Erg6). The genome of Mucor lusitanicus encodes three putative erg6 genes (i.e., erg6a, erg6b, and erg6c). In this study, the role of erg6 genes in azole resistance of Mucor was analyzed by generating and analyzing knockout mutants constructed using the CRISPR-Cas9 technique. Susceptibility testing of the mutants suggested that one of the three genes, erg6b, plays a crucial role in the azole resistance of Mucor. The sterol composition of erg6b knockout mutants was significantly altered compared to that of the original strain, and it revealed the presence of at least four alternative sterol biosynthesis pathways leading to formation of ergosterol and other alternative, nontoxic sterol products. Dynamic operation of these pathways and the switching of biosynthesis from one to the other in response to azole treatment could significantly contribute to avoiding the effects of azoles by these fungi. IMPORTANCE The fungal membrane contains ergosterol instead of cholesterol, which offers a specific point of attack for the defense against pathogenic fungi. Indeed, most antifungal agents target ergosterol or its biosynthesis. Mucormycoses-causing fungi are resistant to most antifungal agents, including most of the azoles. For this reason, the drugs of choice to treat such infections are limited. The exploration of ergosterol biosynthesis is therefore of fundamental importance to understand the azole resistance of mucormycosis-causing fungi and to develop possible new control strategies. Characterization of sterol 24-C-methyltransferase demonstrated its role in the azole resistance and virulence of M. lusitanicus. Moreover, our experiments suggest that there are at least four alternative pathways for the biosynthesis of sterols in Mucor. Switching between pathways may contribute to the maintenance of azole resistance.


Antifungal Agents , Mucormycosis , Humans , Antifungal Agents/pharmacology , Sterols/metabolism , Sterols/pharmacology , Mucor/genetics , Mucor/metabolism , Biosynthetic Pathways , Drug Resistance, Fungal/genetics , Azoles/pharmacology , Ergosterol , Microbial Sensitivity Tests
20.
Lab Invest ; 103(4): 100041, 2023 04.
Article En | MEDLINE | ID: mdl-36870291

Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.


Berberine , Fatty Liver , Leukemia, Myeloid, Acute , Male , Mice , Animals , Sirtuin 1/metabolism , Lipid Metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Ethanol/toxicity , Transcription Factors/metabolism , Sterols/metabolism , Sterols/pharmacology , Leukemia, Myeloid, Acute/metabolism
...